Energy Source Life Cycle

LC8411 36 weeks

Table of Contents

Acknowledgments ... 1
Course Description.. 2
Task Essentials Table.. 3
Curriculum Framework... 5
Distinguishing Among Sources of Energy.. 5
Understanding Extraction Techniques .. 12
Understanding Refinement Techniques .. 15
Understanding Fuel Transport Logistics ... 17
Exploring Energy Generation ... 20
Exploring Transmission, Distribution, and Storage .. 22
Exploring Environmental, Health, and Safety Aspects of Energy Production ... 28
Exploring Energy Markets .. 32
SOL Correlation by Task .. 34
Appendix: Credentials, Course Sequences, and Career Cluster Information ... 37

Acknowledgments

The components of this instructional framework were developed by the following curriculum development panelists:

Charles Barksdale, Utilities and Performance Contracting Manager, Department of Mines, Minerals and Energy, Richmond
Brandi F. Bestpitch, Energy Data Analyst, Division of Energy, Department of Mines, Minerals and Energy, Richmond
Richard Champigny, Instructor, Chesterfield Career and Technical Center at Courthouse, Chesterfield County Public Schools
Jim Egenrieder, Engineering Education Research Faculty and Director, Virginia Tech National Capital Region, Falls Church
Sasha Furdak-Roy, Operations Center Manager, Columbia Gas, Warrenton
Matt Kellam, Military and Recruitment Program Coordinator, Dominion Energy,
Richmond
Greg Meinweiser, Engineer II, Dominion Energy, Henrico
Catherine Mosley, Director of Community Relations, sPower, Richmond
Beth Murtha, Project Manager, Framatome Inc., Lynchburg
Remy Pangle, Director of Education and Outreach, Center for the Advancement of Sustainable Energy (CASE) and State Facilitator, Wind for Schools (WfS), James Madison University
Beth Stockner, Public Relations Manager, Virginia Oil and Gas Association, Abingdon
Dana Willingham, Technical Training Manager, Columbia Gas/NiSource, Chester
Cathy Woody, Workforce Development Manager, Planning, Framatome Inc., Lynchburg

Correlations to the Virginia Standards of Learning were reviewed and updated by:

Leslie R. Bowers, English Teacher (ret.), Newport News Public Schools
Vickie L. Inge, Mathematics Committee Member, Virginia Mathematics and Science Coalition
Anne F. Markwith, New Teacher Mentor (Science), Gloucester County Public Schools
Michael Nagy, Social Studies Department Chair, Rustburg High School, Campbell County Public Schools

The framework was edited and produced by the CTE Resource Center:

Debi F. Coleman, Writer/Editor
Kevin P. Reilly, Administrative Coordinator

Virginia Department of Education Staff

Dr. Lynn Basham, Specialist, Technology Education and Related Clusters
J. Anthony Williams, Curriculum and Instruction Coordinator
Dr. David S. Eshelman, Director, Workforce Development and Initiatives
George R. Willcox, Director, Operations and Accountability

Office of Career, Technical, and Adult Education
Virginia Department of Education

Copyright © 2020

Course Description

Suggested Grade Level: 9 or 10

Exploring concepts, trends, challenges, and careers, students will build an understanding of energy, from source to end-user. Students participate in hands-on activities, such as illustrating
and modeling electrical grids, gas systems, and other renewable- and nonrenewable-energy systems. Students explore markets, grid modernization, efficiency, innovation, and careers in energy.

Task Essentials Table

- Tasks/competencies designated by plus icons (⊕) in the left-hand column(s) are essential
- Tasks/competencies designated by empty-circle icons (○) are optional
- Tasks/competencies designated by minus icons (⊖) are omitted
- Tasks marked with an asterisk (*) are sensitive.

<table>
<thead>
<tr>
<th>Task Number</th>
<th>LC8411</th>
<th>Tasks/Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>⊕</td>
<td>Define energy.</td>
</tr>
<tr>
<td>40</td>
<td>⊕</td>
<td>Identify units of measure for power.</td>
</tr>
<tr>
<td>41</td>
<td>⊕</td>
<td>Define life cycle as it relates to energy sources.</td>
</tr>
<tr>
<td>42</td>
<td>⊕</td>
<td>Describe the primary forms of energy and their uses.</td>
</tr>
<tr>
<td>43</td>
<td>⊕</td>
<td>Identify sources of energy.</td>
</tr>
<tr>
<td>44</td>
<td>⊕</td>
<td>Evaluate energy sources that are nonrenewable, renewable, and inexhaustible.</td>
</tr>
<tr>
<td>45</td>
<td>⊕</td>
<td>Compare the footprints of various energy sources.</td>
</tr>
<tr>
<td>46</td>
<td>⊕</td>
<td>Investigate career options within the energy sector.</td>
</tr>
<tr>
<td>47</td>
<td>⊕</td>
<td>Describe the difference between extraction and the harnessing of energy sources.</td>
</tr>
<tr>
<td>48</td>
<td>⊕</td>
<td>Identify energy sources that are mined and the techniques used for extraction.</td>
</tr>
<tr>
<td>49</td>
<td>⊕</td>
<td>Identify energy sources extracted using drilling and the techniques used for extraction.</td>
</tr>
<tr>
<td>50</td>
<td>⊕</td>
<td>Identify energy sources that are harnessed.</td>
</tr>
<tr>
<td>Understanding Refinement Techniques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>51</td>
<td>🔄</td>
<td>Define refinement.</td>
</tr>
<tr>
<td>52</td>
<td>🔄</td>
<td>Describe which energy sources require refinement.</td>
</tr>
<tr>
<td>53</td>
<td>🔄</td>
<td>Research refinement techniques.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Understanding Fuel Transport Logistics</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>🔄</td>
<td>Trace the transport of oil and natural gas from extraction to energy production.</td>
</tr>
<tr>
<td>55</td>
<td>🔄</td>
<td>Trace the transport of solid fuel from extraction to energy production.</td>
</tr>
<tr>
<td>56</td>
<td>🔄</td>
<td>Create a model of a fuel transportation method.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exploring Energy Generation</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>🔄</td>
<td>Describe how energy sources are used to generate electricity.</td>
</tr>
<tr>
<td>58</td>
<td>🔄</td>
<td>Describe other uses of energy sources (aside from electricity).</td>
</tr>
<tr>
<td>59</td>
<td>🔄</td>
<td>Model a method of energy generation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exploring Transmission, Distribution, and Storage</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>🔄</td>
<td>Define the (electrical) grid.</td>
</tr>
<tr>
<td>61</td>
<td>🔄</td>
<td>Explain the role of electrical transmission, distribution, and storage.</td>
</tr>
<tr>
<td>62</td>
<td>🔄</td>
<td>Outline electricity’s path from producer to consumer.</td>
</tr>
<tr>
<td>63</td>
<td>🔄</td>
<td>Illustrate the grid.</td>
</tr>
<tr>
<td>64</td>
<td>🔄</td>
<td>Analyze grid modernization efforts.</td>
</tr>
<tr>
<td>65</td>
<td>🔄</td>
<td>Differentiate transmission, distribution, and storage of gas and electricity.</td>
</tr>
<tr>
<td>66</td>
<td>🔄</td>
<td>Model components of a natural gas system.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exploring Environmental, Health, and Safety Aspects of Energy Production</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>🔄</td>
<td>Identify decommissioning and reclamation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>68</td>
<td>🌟</td>
<td>Diagram the life cycle of energy sources.</td>
</tr>
<tr>
<td>69</td>
<td>🌟</td>
<td>Identify environmental, health, and safety aspects of the energy life cycle.</td>
</tr>
<tr>
<td>70</td>
<td>🌟</td>
<td>Explain the role of regulatory agencies.</td>
</tr>
</tbody>
</table>

Exploring Energy Markets

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>🌟</td>
<td>Define energy markets.</td>
</tr>
<tr>
<td>72</td>
<td>🌟</td>
<td>Identify factors that influence energy markets.</td>
</tr>
<tr>
<td>73</td>
<td>🌟</td>
<td>Research an aspect of the energy market.</td>
</tr>
</tbody>
</table>

Legend: 🌟Essential ⭕Non-essential ❌Omitted

Curriculum Framework

Distinguishing Among Sources of Energy

Task Number 39

Define energy.

Definition

Definition should include

- quantitative property that must be transferred to an object to perform work on or to heat the object
- kinetic vs. potential energy
- distinction between energy and power
 - energy—the capacity to do work
 - power—the rate at which work is done.

Process/Skill Questions

- What is the difference between power and energy?
- What are examples of energy being used to do work?
• How is power derived from alternate energy sources?

ITEEA National Standards

16. Energy and Power Technologies

2. The Core Concepts of Technology

TSA Competitive Events

Technology Bowl

Task Number 40

Identify units of measure for power.

Definition

Identification should include units of measure, such as

• amps
• watts
• volts
• ohms
• Roentgen equivalent man (REM)
• gallons per minute (GPM)
• radiation absorbed dose [rad], British thermal units (BTUs)
• calories
• horsepower
• pounds per square inch (PSI)
• torque
• Fahrenheit
• pounds per hour (lbs/hr).

Process/Skill Questions

• What is measured in amps (i.e., amperes)?
• What does torque measure?
• What does Roentgen equivalent man (REM) measure?

ITEEA National Standards
Task Number 41

Define *life cycle* as it relates to energy sources.

Definition

Definition should include components such as

- extraction
- refinement
- transportation
- generation
- distribution/usage
- decommissioning/reclamation.

Process/Skill Questions

- What is an energy *life cycle*?
- What energy sources do not follow the typical life cycle?
- What are the most challenging components of the energy life cycle?
- Which components of the energy life cycle produce the most jobs?
Task Number 42

Describe the primary forms of energy and their uses.

Definition

Description should include uses of

- thermal energy – internal energy of a system in thermodynamic equilibrium by virtue of its temperature, used for such things as home heating, transportation, cooking, water heating, industrial production, boilers, nuclear medicine, and x-rays
- mechanical energy – energy associated with the motion and position of an object, used for such things as transportation, power production, wind turbines, and steam turbines
- chemical energy – energy derived from chemical reactions (e.g., batteries, fuel, food), used for such things as transportation and electronics
- electrical energy – energy made available by the flow of electric charge through a conductor for residential, commercial, and industrial use
- radiant energy – energy transferred by electromagnetic radiation (e.g., light)
- nuclear energy – energy stored in the nuclei of atoms
- sound energy – produced by vibrations, when energy travels through a substance in the form of waves
- elastic energy – potential energy stored in a coiled spring
- gravitational energy – potential energy stored in objects higher than the ground.

Process/Skill Questions

- What applications of chemical energy exist?
- How might one determine the type of energy most effective for a given application?
- How is electricity a result of thermal, mechanical, or chemical generation?
- What type of energy powers batteries? Why is that the best choice?
- What types of energy are used in transportation?

ITEEA National Standards

16. Energy and Power Technologies

TSA Competitive Events

Essays on Technology

Technology Bowl
Task Number 43

Identify sources of energy.

Definition

Identification may include

- fossil fuels (e.g., coal, oil)
- gas
 - natural gas
 - renewable natural gas
 - hydrogen
 - propane
- solar (e.g., thermal, photovoltaic, and concentrating)
- nuclear (e.g., fission, fusion)
- hydroelectric (e.g., impoundment vs. run-of-river)
- wind (e.g., onshore, offshore)
- ocean energy (e.g., wave, tidal/current, ocean thermal energy conversion [OTEC])
- geothermal
- biomass (e.g., algae, hemp, crop and forestry debris)
- waste-to-energy
- other
 - elastic
 - magnetic
 - gravitational
 - emerging technologies.

Process/Skill Questions

- What energy sources are used in Virginia?
- What is the energy profile for Virginia?

ITEEA National Standards

16. Energy and Power Technologies

TSA Competitive Events

Technology Bowl
Task Number 44

Evaluate energy sources that are nonrenewable, renewable, and inexhaustible.

Definition

Evaluation should include

- definitions of nonrenewable, renewable, and inexhaustible energy sources
- examples of energy sources categorized as nonrenewable, renewable, and inexhaustible
- uses for nonrenewable, renewable, and inexhaustible energy sources in specific geographic locations
- positive and negative effects of nonrenewable, renewable, and inexhaustible energy sources on the environment, society, and the individual.

Teacher resource:
National Energy Education Development (NEED), The NEED Project

Process/Skill Questions

- What is the difference between a renewable and inexhaustible energy source?
- What is an example of a nonrenewable, renewable, and an inexhaustible energy source?
- Where do these energy sources thrive (geographically speaking)?

ITEEA National Standards

13. Assess the Impact of Products and Systems

TSA Competitive Events

Essays on Technology

Task Number 45

Compare the footprints of various energy sources.

Definition

Comparison should include
• physical footprint (i.e., acreage)
• carbon footprint
• capacity (as part of the grid)
• market share
• energy sources from specific geographic locations (may take into account physical location, infrastructure, population densities, environmental concerns).

Comparison should utilize maps.

Teacher resource:
Independent Statistics and Analysis, U.S. Energy Information Administration

Process/Skill Questions

• What energy sources are most prevalent in Virginia?
• What energy sources are best suited for densely populated areas? Sparsely populated areas?
• What is capacity factor?
• How does market share vary in different regions of Virginia?

ITEEA National Standards

16. Energy and Power Technologies

TSA Competitive Events

Essays on Technology

Technology Bowl

Task Number 46

Investigate career options within the energy sector.

Definition

Investigation may include consideration of

• fields of study/expertise (e.g., engineering, law)
• educational/experience requirements (e.g., trade schools, college, military)
• certification requirements
• salary/compensation
• workforce demand
• trade organizations.

Process/Skill Questions

• Which energy sectors produce the most jobs?
• Which component of the energy life cycle produces the most jobs?
• What area has the highest demand for workers?
• What are the advantages of a diverse workforce?
• What might the job outlook for this sector be in five years?

ITEEA National Standards

16. Energy and Power Technologies

TSA Competitive Events

Essays on Technology

Understanding Extraction Techniques

Task Number 47

Describe the difference between extraction and the harnessing of energy sources.

Definition

Description should include

• definitions of extraction and harnessing
• forms of extraction and harnessing energy resources
• various energy sources
• methods for collecting energy resources
• differences in extraction and harnessing across geographical regions
• identifying misconceptions associated with various extraction and harnessing techniques.
Process/Skill Questions

- What forms of energy require fuel?
- What forms of energy do not require fuel?
- How have new extraction techniques changed energy markets?

ITEEA National Standards

16. Energy and Power Technologies

TSA Competitive Events

Technology Problem Solving

Task Number 48

Identify energy sources that are mined and the techniques used for extraction.

Definition

Identification should include

- sources
 - coal
 - uranium
 - thorium
 - rare earth metals (e.g., for solar panels, batteries)
- extraction techniques
 - surface mining
 - deep mining.

Identification may include a comparison between surface and deep mining.

Process/Skill Questions

- What is the difference between surface mining and deep mining?
- What are the obstacles to the use of thorium in the United States?
- Where are rare earth metals mined?

ITEEA National Standards
16. Energy and Power Technologies

TSA Competitive Events

Technology Bowl

Task Number 49

Identify energy sources extracted using drilling and the techniques used for extraction.

Definition

Identification should include

- **sources**
 - oil
 - natural gas
 - propane
- **extraction techniques**
 - wells (vertical and horizontal)
 - hydraulic fracturing.

Identification may include a comparison between vertical and horizontal wells.

Process/Skill Questions

- What are the benefits and challenges of offshore drilling?
- What is *hydraulic fracturing*?
- What was the focus of the film *Deep Water Horizon*?

ITEEA National Standards

16. Energy and Power Technologies

TSA Competitive Events

Technology Bowl
Task Number 50

Identify energy sources that are harnessed.

Definition

Identification should include

- wind
- solar
- hydroelectric power
- geothermal
- ocean energy (wave, tidal/current, ocean thermal energy conversion [OTEC])
- biomass (e.g., algae, hemp, crop and forestry debris)
- waste-to-energy.

Identification should include the concept that some energy sources (e.g., wind and solar) that are harnessed do not include a fuel.

Process/Skill Questions

- Which energy sources are most directly accessible to the end user?
- How are each of these energy sources related to the sun?
- What are the benefits and challenges of these harnessed energy sources?
- What emerging technologies are associated with these energy sources?

ITEEA National Standards

16. Energy and Power Technologies

TSA Competitive Events

Biotechnology Design

Technology Bowl

Understanding Refinement Techniques
Task Number 51

Define refinement.

Definition

Definition should include the concept that energy fuels must go from a raw state to a usable state for various purposes (impurities and unwanted elements must be removed).

Process/Skill Questions

- Why are some components used in other production (e.g., plastics) removed from fuels?
- Why are unwanted impurities removed?
- How does refinement affect efficiency?

ITEEA National Standards

16. Energy and Power Technologies

TSA Competitive Events

Technology Bowl

Task Number 52

Describe which energy sources require refinement.

Definition

Description should include

- coal
- gas
- oil
- nuclear (e.g., fusion and fission)
- biofuels.

Process/Skill Questions

- Which energy sources require refinement?
• What are some marketable by-products of refinement processes?
• What is the difference between weapons-grade uranium and nuclear power plant uranium?

ITEEA National Standards

16. Energy and Power Technologies

Task Number 53

Research refinement techniques.

Definition

Research may include techniques for one or more of the following energy sources

• coal
• gas
• oil
• nuclear (enrichment)
• biofuels.

Process/Skill Questions

• Why is it important to enrich uranium?
• What is unique about the refinement of biofuels?
• What is the by-product of uranium enrichment?

ITEEA National Standards

16. Energy and Power Technologies

TSA Competitive Events

Prepared Presentation

Understanding Fuel Transport Logistics
Task Number 54

Trace the transport of oil and natural gas from extraction to energy production.

Definition

Tracing should include oil, compressed natural gas (CNG), and/or liquefied natural gas (LNG) transported via

- pipelines
- trucking
- shipping (e.g., ocean transport)
- rail.

Tracing also includes an exploration of regulatory requirements.

Teacher resource:
Regulations, U.S. Department of Transportation

Process/Skill Questions

- What are logistical concerns for renewable energy sources?
- What are the drawbacks and benefits of each mode of transport?

ITEEA National Standards

16. Energy and Power Technologies
18. Transportation Technologies

TSA Competitive Events

Technology Bowl

Task Number 55
Trace the transport of solid fuel from extraction to energy production.

Definition

Tracing should include coal, enriched uranium, refined rare earth metals, thorium, and fuel assemblies transported via

- trucking
- rail
- shipping (e.g., ocean and barge transport).

Tracing also includes an exploration of regulatory requirements.

Process/Skill Questions

- What are regulatory concerns in nuclear fuel transport?
- Which energy components undergo a manufacturing process before producing energy?

ITEEA National Standards

18. Transportation Technologies

TSA Competitive Events

Technology Bowl

Task Number 56

Create a model of a fuel transportation method.

Definition

Creation may include models that are

- topographical maps
- three-dimensional (3D)
- computer-aided design (CAD) drawings
- geographic information system (GIS) maps.
Process/Skill Questions

- What does topographical mean?
- How prevalent is GIS mapping in the energy industry?
- How may regulation affect fuel transportation?

ITEEA National Standards

11. Apply the Design Process

12. Use and Maintain Technological Products and Systems

TSA Competitive Events

Biotechnology Design

Computer-Aided Design (CAD), Engineering

Engineering Design

Exploring Energy Generation

Task Number 57

Describe how energy sources are used to generate electricity.

Definition

Description may include a comparison of different energy sources used for electricity generation.

Process/Skill Questions

- What are methods of generating power?
- How have power-generation methods changed?
- Why are some power-generation methods more efficient than others?
- How is efficiency measured?
ITEEA National Standards

16. Energy and Power Technologies

TSA Competitive Events
Technology Bowl

Task Number 58

Describe other uses of energy sources (aside from electricity).

Definition

Description should include

- uses of natural gas (CNG)
- industrial/manufacturing processes (e.g., coal is needed for steel production)
- desalinization
- transportation
- solar heating
- windmills.

Process/Skill Questions

- What is gasoline gallon equivalent?
- How can solar energy be used for cooking?
- What is desalinization?
- What are the differences between passive and active solar?

ITEEA National Standards

16. Energy and Power Technologies

Task Number 59

Model a method of energy generation.
Definition

Model may include

- diagram
- 3D
- CAD
- illustration.

Process/Skill Questions

- What are the similarities between large-scale and small-scale energy generation?
- What are the benefits and challenges of using gears in a wind turbine?
- How does a solar panel work?

ITEEA National Standards

16. Energy and Power Technologies

3. The Relationships Among Technologies and the Connections Between Technology and Other Fields

TSA Competitive Events

Biotechnology Design

Computer-Aided Design (CAD), Engineering

Engineering Design

Exploring Transmission, Distribution, and Storage

Task Number 60

Define the (electrical) grid.
Definition

Definition should include

- the grid—transmission network
- difference between transmission and distribution
 - transmission—the process of delivering energy (115kV to 500 kV) from generation/production to substation
 - distribution—the process of delivering energy (120 V to 34.5 kV) from substation to the end user
- components of the transmission grid
- power station
 - step-up transformers
 - switchyard
 - transmission towers
 - transmission lines (overhead and underground)
 - transmission substations
 - regulators
- components of the distribution grid
 - distribution substations
 - step-down transformers
 - breakers/fuses
 - switches
 - distribution lines (overhead and underground)
 - utility poles
 - regulators
 - inverters.

Definition should explore the role of the Federal Energy Regulation Commission (FERC) in control of the grid.

Process/Skill Questions

- What is the FERC? How does it regulate the grid?

ITEEA National Standards

16. Energy and Power Technologies

TSA Competitive Events

Technology Bowl
Task Number 61

Explain the role of electrical transmission, distribution, and storage.

Definition

Explanation should include

- needs addressed by the grid
- evolution of the grid
- emerging technologies and future challenges.

Process/Skill Questions

- What role may batteries play in the grid?

ITEEA National Standards

16. Energy and Power Technologies

TSA Competitive Events

Principles of Technology (Virginia only)

Task Number 62

Outline electricity’s path from producer to consumer.

Definition

Outlining should include each component of the grid.

Process/Skill Questions

- What roles do the various components play in the grid?
- How do the components of the grid work together?
- How is energy transmitted from generation to the end user?

ITEEA National Standards
Task Number 63

Illustrate the grid.

Definition

Illustration should include

- connection among grid components, from generation to end user
- the technical attributes of each component
- mechanisms, tools, and equipment in each component of the grid
- the process of converting direct current (DC) to alternating current (AC) and when the process is used (i.e., from transmission to distribution).

Teacher resource:
KidWind

Process/Skill Questions

- How does protective equipment make the grid more efficient?
- How do the components of the grid work together?
- How could the grid be made more efficient?
- How could the grid be modernized?

ITEEA National Standards

16. Energy and Power Technologies

3. The Relationships Among Technologies and the Connections Between Technology and Other Fields

TSA Competitive Events

Animatronics
Task Number 64

Analyze grid modernization efforts.

Definition

Analysis should include

- grid reliability
- distributed energy resources (DER)
- smart grid
- micro-grids
- storage.

Process/Skill Questions

- What are concerns about grid infrastructure, cybersecurity, and national security?
- How is eco-terrorism a concern?
- How does grid modernization influence energy reliability and sustainability and environmental safety?

ITEEA National Standards

13. Assess the Impact of Products and Systems

16. Energy and Power Technologies

TSA Competitive Events

Principles of Technology (Virginia only)

Task Number 65

Differentiate transmission, distribution, and storage of gas and electricity.
Definition

Differentiation should include

- uses of natural gas (aside from electricity generation)
- identification of grid components and natural gas system components
- comparison between components of the grid and components of the natural gas system.

Process/Skill Questions

- What are the end uses of natural gas, beside electricity?
- What are byproducts of natural gas?

ITEEA National Standards

16. Energy and Power Technologies

Task Number 66

Model components of a natural gas system.

Definition

Model should include

- diagram
- 3D
- CAD
- illustration.

Process/Skill Questions

- What environmental or geographical factors influence extraction, pipelines, and site locations?
- What social, logistical, and economic factors influence site locations?

ITEEA National Standards

16. Energy and Power Technologies

3. The Relationships Among Technologies and the Connections Between Technology and Other Fields
TSA Competitive Events

Biotechnology Design

Computer-Aided Design (CAD), Engineering

Engineering Design

Exploring Environmental, Health, and Safety Aspects of Energy Production

Task Number 67

Identify decommissioning and reclamation.

Definition

Identification should include

- definition of decommissioning and reclamation
- examples of decommissioning and reclamation efforts.

Process/Skill Questions

- What are benefits of using reclaimed areas?
- What are challenges involved in decommissioning and reclamation?
- What are safety concerns?

ITEEA National Standards

16. Energy and Power Technologies

5. The Effects of Technology on the Environment
Task Number 68

Diagram the life cycle of energy sources.

Definition

Diagram should include

- traditional
 - extraction
 - refinement
 - distribution
 - generation
 - usage
 - decommissioning/reclamation

- nontraditional
 - generation
 - usage
 - decommissioning/reclamation.

Process/Skill Questions

- What is an example of extraction?
- What are some examples of reclamation?

ITEEA National Standards

16. Energy and Power Technologies

Task Number 69

Identify environmental, health, and safety aspects of the energy life cycle.

Definition

Identification should include

- habitats
- soil quality
- water quality
• air quality
• worker safety and training
• public health and safety
• waste concerns
• concerns related to lack of access to energy.

Process/Skill Questions

• What are positive and negative aspects of the energy life cycle?
• What is energy poverty?

ITEEA National Standards

16. Energy and Power Technologies

4. The Cultural, Social, Economic, and Political Effects of Technology

5. The Effects of Technology on the Environment

TSA Competitive Events

Essays on Technology

Technology Bowl

Task Number 70

Explain the role of regulatory agencies.

Definition

Explanation may include but not be limited to

• localities
• permitting
• inspections
• state agencies and organizations
 ○ Virginia Department of Environmental Quality (DEQ)
 ○ Virginia Department of Transportation (VDOT)
 ○ Virginia Department of Mines, Minerals, and Energy (DMME)
 ○ Virginia’s State Corporation Commission (SCC)
 ○ Virginia Department of Labor and Industry (DOLI)
• Virginia Occupational Safety and Health (VOSH) Safety Compliance Division
• Virginia Department of Health (VDH)

• federal agencies and organizations
 • Federal Energy Regulatory Commission (FERC)
 • Rural Utilities Service (RUS)
 • Federal Communications Commission (FCC)
 • Federal Aviation Administration (FAA)
 • U.S. Department of Defense (DOD)
 • U.S. Environmental Protection Agency (EPA)
 • U.S. Nuclear Regulatory Commission (NRC)
 • Occupational Safety and Health Administration (OSHA)
 • Bureau of Ocean Energy Management (BOEM)
 • U.S. Fish and Wildlife Service (FWS)
 • U.S. Forest Service (FS)
 • U.S. Department of Energy (DOE)
 • U.S. Department of Homeland Security (DHS)
 • U.S. Army Corps of Engineers (DHS)

• international organizations
 • North American Electric Reliability Corporation (NERC)
 • International Atomic Energy Agency (IAEA).

Process/Skill Questions

• How can regulatory issues affect all aspects of the energy life cycle?
• How do regulations affect the energy business and availability?
• Why are regulations important?
• How do agencies overlap?

ITEEA National Standards

4. The Cultural, Social, Economic, and Political Effects of Technology

6. The Role of Society in the Development and Use of Technology

TSA Competitive Events

Structural Design and Engineering

Transportation Modeling
Exploring Energy Markets

Task Number 71

Define *energy markets*.

Definition

Definition should include the concept that energy markets are commodity markets that deal with the trade and supply of energy.

Process/Skill Questions

- What are factors that influence energy markets?
- What are the regions of the energy markets?

ITEEA National Standards

16. Energy and Power Technologies

3. The Relationships Among Technologies and the Connections Between Technology and Other Fields

TSA Competitive Events

Biotechnology Design

Technology Bowl

Task Number 72

Identify factors that influence energy markets.

Definition

Identification may include
• incentives
• efficiency
• real-time pricing
• day-ahead pricing
• weather and natural disasters
• storage capacity
• capacity factor
• demand.

Teacher resources:

Pennsylvania, Jersey, Maryland Power Pool (PJM)

APEX Clean Energy

Process/Skill Questions

• What is a regional transmission organization (RTO)?
• How does weather influence the energy markets?

ITEEA National Standards

16. Energy and Power Technologies

3. The Relationships Among Technologies and the Connections Between Technology and Other Fields

4. The Cultural, Social, Economic, and Political Effects of Technology

Task Number 73

Research an aspect of the energy market.

Definition

Research may include

• fuel procurement
• fixed and variable costs
• energy brokers
• day trading
• consumer demand.
Process/Skill Questions

- What careers are available?
- What are the laws influencing the energy market?
- How do the laws affect energy markets?

ITEEA National Standards

16. Energy and Power Technologies

3. The Relationships Among Technologies and the Connections Between Technology and Other Fields

4. The Cultural, Social, Economic, and Political Effects of Technology

TSA Competitive Events

Extemporaneous Speech

Prepared Presentation

SOL Correlation by Task

<table>
<thead>
<tr>
<th></th>
<th>Define energy.</th>
<th>English: 10.3, 11.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>History and Social Science: VUS.8, WHII.4, WHII.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Science: PH.5, PH.6, PH.7, PH.11</td>
</tr>
<tr>
<td>40</td>
<td>Identify units of measure for power.</td>
<td>English: 10.5, 11.5</td>
</tr>
<tr>
<td>41</td>
<td>Define life cycle as it relates to energy sources.</td>
<td>English: 10.3, 11.3</td>
</tr>
<tr>
<td>42</td>
<td>Describe the primary forms of energy and their uses.</td>
<td>English: 10.5, 11.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>History and Social Science: VUS.8, WHII.4, WHII.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Science: PH.7</td>
</tr>
<tr>
<td>43</td>
<td>Identify sources of energy.</td>
<td>English: 10.5, 11.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>History and Social Science: GOVT.12, VUS.14, WG.17, WHII.14</td>
</tr>
<tr>
<td></td>
<td>Activity</td>
<td>Subjects</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>44</td>
<td>Evaluate energy sources that are nonrenewable, renewable, and inexhaustible.</td>
<td>Science: ES.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Compare the footprints of various energy sources.</td>
<td>English: 10.5, 11.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>History and Social Science: GOVT.12, VUS.14, WG.17, WHII.14</td>
</tr>
<tr>
<td>46</td>
<td>Investigate career options within the energy sector.</td>
<td>English: 10.5, 11.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>History and Social Science: GOVT.12, VUS.14, WG.17, WHII.14</td>
</tr>
<tr>
<td>47</td>
<td>Describe the difference between extraction and the harnessing of energy sources.</td>
<td>English: 10.3, 10.5, 11.3, 11.5</td>
</tr>
<tr>
<td>48</td>
<td>Identify energy sources that are mined and the techniques used for extraction.</td>
<td>English: 10.5, 11.5</td>
</tr>
<tr>
<td>49</td>
<td>Identify energy sources extracted using drilling and the techniques used for extraction.</td>
<td>English: 10.5, 11.5</td>
</tr>
<tr>
<td>50</td>
<td>Identify energy sources that are harnessed.</td>
<td>English: 10.5, 11.5</td>
</tr>
<tr>
<td>51</td>
<td>Define refinement.</td>
<td>English: 10.3, 11.3</td>
</tr>
<tr>
<td>52</td>
<td>Describe which energy sources require refinement.</td>
<td>English: 10.5, 11.5</td>
</tr>
<tr>
<td>53</td>
<td>Research refinement techniques.</td>
<td>English: 10.5, 10.8, 11.5, 11.8</td>
</tr>
<tr>
<td>54</td>
<td>Trace the transport of oil and natural gas from extraction to energy production.</td>
<td>English: 10.5, 11.5</td>
</tr>
<tr>
<td>55</td>
<td>Trace the transport of solid fuel from extraction to energy production.</td>
<td>English: 10.5, 11.5</td>
</tr>
<tr>
<td>56</td>
<td>Create a model of a fuel transportation method.</td>
<td>English: 10.1, 11.1</td>
</tr>
<tr>
<td>57</td>
<td>Describe how energy sources are used to generate electricity.</td>
<td>English: 10.5, 11.5</td>
</tr>
</tbody>
</table>
| 58 | Describe other uses of energy sources (aside from electricity). | English: 10.5, 11.5
| History and Social Science: GOVT.12, VUS.14, WG.17, WHII.14 |
| 59 | Model a method of energy generation. | History and Social Science: GOVT.12, VUS.14, WG.17, WHII.14 |
| 60 | Define the (electrical) grid. | English: 10.3, 11.3 |
| 61 | Explain the role of electrical transmission, distribution, and storage. | English: 10.5, 11.5 |
| 62 | Outline electricity’s path from producer to consumer. | English: 10.6, 10.7, 11.6, 11.7 |
| 63 | Illustrate the grid. | |
| 64 | Analyze grid modernization efforts. | English: 10.5, 11.5 |
| 65 | Differentiate transmission, distribution, and storage of gas and electricity. | English: 10.5, 11.5 |
| 66 | Model components of a natural gas system. | |
| 67 | Identify decommissioning and reclamation. | English: 10.5, 11.5 |
| 68 | Diagram the life cycle of energy sources. | |
| 69 | Identify environmental, health, and safety aspects of the energy life cycle. | English: 10.5, 11.5
| History and Social Science: GOVT.12, VUS.14, WG.17, WHII.14 |
| 70 | Explain the role of regulatory agencies. | English: 10.5, 10.8, 11.5, 11.8
| History and Social Science: GOVT.7, GOVT.8, GOVT.9, GOVT.15 |
| 71 | Define energy markets. | English: 10.3, 11.3
| History and Social Science: GOVT.14, GOVT.15 |
| 72 | Identify factors that influence energy markets. | English: 10.5, 11.5 |
| 73 | Research an aspect of the energy market. | English: 10.8, 11.8 |
Appendix: Credentials, Course Sequences, and Career Cluster Information

Industry Credentials: Only apply to 36-week courses

- Energy Industry Fundamentals Certificate Assessment

Concentration sequences: A combination of this course and those below, equivalent to two 36-week courses, is a concentration sequence. Students wishing to complete a specialization may take additional courses based on their career pathways. A program completer is a student who has met the requirements for a CTE concentration sequence and all other requirements for high school graduation or an approved alternative education program.

- Engineered Energy Systems (EES8411/36 weeks)

Career Cluster: Energy

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Occupations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Efficiency</td>
<td>Electrical Engineer
Electrician
Environmental Engineer
Environmental Engineering Technician
Environmental Science and Protection Technician
Environmental Scientist
HVAC and Refrigeration Mechanic or Installer</td>
</tr>
<tr>
<td>Fuels Production</td>
<td>Chemical Engineer
Chemist
Continuous Mining Machine Operator
First-Line Supervisor of Transportation and Material-Moving
Machine and Vehicle Operator
Geological Technician
Petroleum Engineer
Petroleum Technician
Service Unit Operator, Oil, Gas, and Mining
Wellhead Pumper</td>
</tr>
<tr>
<td>Power Generation</td>
<td>Control and Valve Installer, Repairer
Electrical Engineering Technician
Electronics Engineer
Electronics Engineering Technician
Engineering Manager
Health and Safety Engineer
Mechanical Engineer
Nuclear Engineer
Nuclear Power Reactor Operator</td>
</tr>
</tbody>
</table>
Career Cluster: Energy

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Occupations</th>
</tr>
</thead>
</table>
| **Transmission and Distribution** | Nuclear Technician
Solar Photovoltaic Installer |
| | Electrical and Electronics Repairer, Powerhouse, Substation and Relay |
| | Electrical Power Line Installer/Repairer |
| | Electro-Mechanical Technician |
| | Gas Compressor and Gas Pumping Station Operator |
| | Pipefitter, Steamfitter |
| | Plumber |
| | Power Distributor, Dispatcher |
| | Wind Turbine Service Technician |

Career Cluster: Science, Technology, Engineering and Mathematics

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Occupations</th>
</tr>
</thead>
</table>
| **Engineering and Technology** | Chemical Engineer
Computer Programmer
Electrical Drafter
Electrical Engineer
Electrical Engineering Technician
Electro-Mechanical Technician
Electronics Engineering Technician
Engineer
Engineering Manager
Engineering Technician
Mechanical Drafter
Mechanical Engineer
Mechanical Engineering Technician
Network and Computer Systems Administrator
Network Systems and Data Communication Analyst
Nuclear Engineer
Petroleum Engineer
Pipeline Drafter
Power Systems Engineer
Quality Engineer
Quality Technician
Statistician
Systems Analyst |
| **Science and Mathematics** | Biologist
Botanist
Ecologist
Environmental Scientist
Geodetic Surveyor
Occupational Health and Safety Specialist |
<table>
<thead>
<tr>
<th>Pathway</th>
<th>Occupations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility and Mobile Equipment Maintenance</td>
<td>Electrical and Electronic Installer</td>
</tr>
<tr>
<td></td>
<td>Electrical and Electronic Repairer</td>
</tr>
<tr>
<td>Health, Safety and Environmental Management</td>
<td>Health, Safety, and Environment Manager</td>
</tr>
<tr>
<td>Logistics Planning and Management Services</td>
<td>Logistics Manager</td>
</tr>
<tr>
<td>Transportation Operations</td>
<td>Transportation Manager</td>
</tr>
<tr>
<td>Transportation Systems/Infrastructure Planning, Management and Regulation</td>
<td>Civil Engineer</td>
</tr>
<tr>
<td></td>
<td>Civil Engineering Technician</td>
</tr>
</tbody>
</table>