Forestry Management, Advanced
8044 36 weeks

Table of Contents

Acknowledgments... 1
Course Description.. 2
Task Essentials Table.. 2
Curriculum Framework... 5
SOL Correlation by Task .. 43
FFA Information... 46
Appendix: Credentials, Course Sequences, and Career Cluster Information ... 48

Acknowledgments

The components of this instructional framework were developed by the following curriculum development panelists:

Dr. Scott Barrett, Associate Professor, Virginia Tech, Blacksburg
Jeremey Falkenau, Senior Area Forester, Virginia Department of Forestry, Charlottesville
Howard C. Hill, Instructor, King William High School, King William County Public Schools
Edward W. McCann, Sr., Forestry Career Advisor, Dabney S. Lancaster Community College, Clifton Forge
Holly McPhail, Horticulturist, Green Biotechnologist and Environmentalist, Eurofins Lancaster Laboratories, Richmond
David G. Morris, Owner, Glen Morris and Sons Logging, Inc. Unionville
Edward R. Olsen, Associate Extension Agent, Virginia Cooperative Extension, Henrico
William “Tad” Phipps, Instructor, Fort Chiswell High School, Wythe County Public Schools
Ellen Powell, Conservation Education Coordinator, Virginia Department of Forestry, Charlottesville
Alan Webb, Instructor, Carroll County High School, Carroll County Public Schools

Correlations to the Virginia Standards of Learning were reviewed and updated by:

Leslie R. Bowers, English Teacher (ret.), Newport News Public Schools
Vickie L. Inge, Mathematics Committee Member, Virginia Mathematics and Science Coalition
Anne F. Markwith, New Teacher Mentor (Science), Gloucester County Public Schools
Michael Nagy, Social Studies Department Chair, Rustburg High School, Campbell County Public Schools
Course Description

Suggested Grade Level: 12

This course offers students instruction in forestry ecology, map interpretation, and timber management practices. Additionally, students will investigate ways to protect and preserve forested land, including pest identification and management, identification of common tree diseases, and forest fire prevention.

As noted in Superintendent's Memo #058-17 (2-28-2017), this Career and Technical Education (CTE) course must maintain a maximum pupil-to-teacher ratio of 20 students to one teacher, due to safety regulations. The 2016-2018 biennial budget waiver of the teacher-to-pupil ratio staffing requirement does not apply.

Task Essentials Table

Template material omitted: General material used to introduce the task list has been omitted.

For the indicated course(s):

- Tasks/competencies designated by plus icons (⊕) in the left-hand column(s) are essential
- Tasks/competencies designated by empty-circle icons (○) are optional
- Tasks/competencies designated by minus icons (⊖) are omitted
- Tasks marked with an asterisk (*) are sensitive.

<table>
<thead>
<tr>
<th>8044</th>
<th>Tasks/Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊕</td>
<td>Identify the role of supervised agricultural experiences (SAEs) in agricultural education.</td>
</tr>
<tr>
<td>⊕</td>
<td>Participate in an SAE.</td>
</tr>
<tr>
<td>Task</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Identify the benefits and responsibilities of FFA membership.</td>
<td></td>
</tr>
<tr>
<td>Describe leadership characteristics and opportunities as they relate to agriculture and FFA.</td>
<td></td>
</tr>
<tr>
<td>Apply for an FFA degree and/or an agricultural proficiency award.</td>
<td></td>
</tr>
<tr>
<td>Define forest ecology.</td>
<td></td>
</tr>
<tr>
<td>Analyze forest ecosystems.</td>
<td></td>
</tr>
<tr>
<td>Explain principles and processes of ecological succession.</td>
<td></td>
</tr>
<tr>
<td>Analyze site factors that influence species diversity.</td>
<td></td>
</tr>
<tr>
<td>Describe ecological concepts of shade tolerance and species competition.</td>
<td></td>
</tr>
<tr>
<td>Identify forest soil characteristics.</td>
<td></td>
</tr>
<tr>
<td>Test soil samples.</td>
<td></td>
</tr>
<tr>
<td>Differentiate among the forest types of North America.</td>
<td></td>
</tr>
<tr>
<td>Describe the relationship between living organisms and the environment.</td>
<td></td>
</tr>
<tr>
<td>Describe the hydrological cycle and its effect on streams and watersheds.</td>
<td></td>
</tr>
<tr>
<td>Describe how land use and other human activities affect soil, water, and vegetative resources.</td>
<td></td>
</tr>
<tr>
<td>Identify the roles of government, industry, and private forestry agencies.</td>
<td></td>
</tr>
<tr>
<td>Interpret topographic maps, relief maps, aerial photography, and virtual soil maps.</td>
<td></td>
</tr>
<tr>
<td>Locate landmarks on a topographic map, a relief map, and in an aerial photograph.</td>
<td></td>
</tr>
<tr>
<td>Determine slope and distance.</td>
<td></td>
</tr>
<tr>
<td>Determine distance and slope with a topographic map.</td>
<td></td>
</tr>
<tr>
<td>Perform map-reading operations.</td>
<td></td>
</tr>
<tr>
<td>Determine land use from aerial photography and satellite images.</td>
<td></td>
</tr>
<tr>
<td>Conduct a land navigation exercise.</td>
<td></td>
</tr>
<tr>
<td>Research mapping programs and geographic information systems (GIS).</td>
<td></td>
</tr>
<tr>
<td>Compare aerial photography, satellite data, and LiDAR in identifying forest groups.</td>
<td></td>
</tr>
<tr>
<td>Create a map of a local forest area in Virginia.</td>
<td></td>
</tr>
<tr>
<td>Explain silvicultural systems used in forest management.</td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td>Details</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Develop a plan for management of a forest.</td>
<td></td>
</tr>
<tr>
<td>Explain nutrient requirements for growth of immature and mature forest systems.</td>
<td></td>
</tr>
<tr>
<td>Develop a plan for a prescribed burn.</td>
<td></td>
</tr>
<tr>
<td>Plant forest seedlings.</td>
<td></td>
</tr>
<tr>
<td>Compare methods of forest regeneration.</td>
<td></td>
</tr>
<tr>
<td>Develop a plan for artificial regeneration.</td>
<td></td>
</tr>
<tr>
<td>Identify forest products and their markets.</td>
<td></td>
</tr>
<tr>
<td>Examine the influence of global markets on the import and export of forest products.</td>
<td></td>
</tr>
<tr>
<td>Measure forest products</td>
<td></td>
</tr>
<tr>
<td>Calculate the total volume and value of pulpwood in standing trees.</td>
<td></td>
</tr>
<tr>
<td>Calculate the volume board feet (VBF) and value of sawtimber/saw logs in standing trees.</td>
<td></td>
</tr>
<tr>
<td>Explain the effects of forestry best-management practices on watershed conditions.</td>
<td></td>
</tr>
<tr>
<td>Explain the laws pertaining to forestry and water quality.</td>
<td></td>
</tr>
<tr>
<td>Outline the essential steps of a harvest plan.</td>
<td></td>
</tr>
<tr>
<td>Describe the advantages and disadvantages of various forest harvesting methods.</td>
<td></td>
</tr>
<tr>
<td>Comply with federal, state, and local safety and legal requirements in the operation of all equipment and tools.</td>
<td></td>
</tr>
<tr>
<td>Operate machinery and equipment.</td>
<td></td>
</tr>
<tr>
<td>Maintain equipment and machinery according to manufacturer recommendations.</td>
<td></td>
</tr>
<tr>
<td>Identify the parts of a chain saw.</td>
<td></td>
</tr>
<tr>
<td>Explain procedures for felling trees.</td>
<td></td>
</tr>
<tr>
<td>Explain bucking and limbing techniques to ensure worker safety.</td>
<td></td>
</tr>
<tr>
<td>Outline procedures for supervising the loading and unloading of logs.</td>
<td></td>
</tr>
<tr>
<td>Describe sawmill safety, equipment operation, and first-aid procedures.</td>
<td></td>
</tr>
<tr>
<td>Describe general sawmill operation activities.</td>
<td></td>
</tr>
<tr>
<td>Demonstrate the ability to operate processing equipment.</td>
<td></td>
</tr>
<tr>
<td>Legend: ☐ Essential ☐ Non-essential ☐ Omitted</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>☐ Demonstrate the ability to operate carriage.</td>
<td></td>
</tr>
<tr>
<td>☐ Define terms used in lumber grading.</td>
<td></td>
</tr>
<tr>
<td>☐ Identify boards as hardwood or softwood.</td>
<td></td>
</tr>
<tr>
<td>☐ List reasons for grading lumber.</td>
<td></td>
</tr>
<tr>
<td>☐ Identify grades used for hardwood and softwood lumber.</td>
<td></td>
</tr>
<tr>
<td>☐ List steps to follow when evaluating lumber.</td>
<td></td>
</tr>
<tr>
<td>☐ Identify insects, diseases, and animal pests common to area forests.</td>
<td></td>
</tr>
<tr>
<td>☐ Identify tree diseases caused by organic pathogens, environmental conditions, and insects.</td>
<td></td>
</tr>
<tr>
<td>☐ Identify disease and pest cycles in tree species.</td>
<td></td>
</tr>
<tr>
<td>☐ Define invasive species.</td>
<td></td>
</tr>
<tr>
<td>☐ Explain climate effects that produce fires.</td>
<td></td>
</tr>
<tr>
<td>☐ Explain the development of a forest wildfire.</td>
<td></td>
</tr>
<tr>
<td>☐ Describe forest wildfire-fighting techniques and fire-control measures.</td>
<td></td>
</tr>
<tr>
<td>☐ Describe the location of a forest fire.</td>
<td></td>
</tr>
<tr>
<td>☐ Explain a fire safety program.</td>
<td></td>
</tr>
<tr>
<td>☐ Prepare publicity for preventing forest fires.</td>
<td></td>
</tr>
<tr>
<td>☐ Develop a forest-fire prevention plan.</td>
<td></td>
</tr>
<tr>
<td>☐ Discuss economic principles in forestry management.</td>
<td></td>
</tr>
</tbody>
</table>

Note: Competencies 39-43 have been added to ensure compliance with federal legislation: National FFA Organization's Federal Charter Amendments Act (Public Law 116-7, https://www.congress.gov/116/plaws/publ7/PLAW-116publ7.pdf). All inquiries may be sent to cte@doe.virginia.gov. Students are provided opportunities for leadership, personal growth, and career success. Instruction is delivered through three major components: classroom and laboratory instruction, supervised agricultural experience (SAE) program, and student leadership (FFA).

Curriculum Framework
Task Number 39

Identify the role of supervised agricultural experiences (SAEs) in agricultural education.

Definition

Identification should include

- defining an SAE program as *an opportunity for students to consider multiple careers and occupations in the agriculture, food, and natural resources (AFNR) industries, learn expected workplace behavior, develop specific skills within an industry, and apply academic and occupational skills in the workplace or a simulated workplace environment*
- researching the Foundational SAE
 - career exploration and planning
 - personal financial planning and management
 - workplace safety
 - employability skills for college and career readiness
 - agricultural literacy
- researching the Immersion SAE
 - entrepreneurship/ownership
 - placement/internships
 - research (experimental, analytical, invention)
 - school business enterprises
 - service learning
- developing a plan to participate in an SAE, based on personal and career goals
- researching available awards and degrees, based on SAE participation.

Teacher resource: [SAE Resources](#), National Council for Agricultural Education

Process/Skill Questions

- What are examples of SAEs related to this course and in the AFNR industries?
- Where can a copy of the Virginia SAE Record Book be found?
- What is an Immersion SAE?
- How does a placement/internship SAE differ from an ownership/entrepreneurship SAE?
- How does an SAE provide relevant work experience and contribute to the development of critical thinking skills?
- How is the SAE an extended individualized instructional component of a student’s Career Plan of Study?
- How can an SAE be used to provide evidence of student growth and participation in authentic, work-related tasks?
- What are the four types of SAEs?
- What are the advantages of participating in work-based learning experiences and projects?
- How does one choose an appropriate SAE in which to participate?
Task Number 40

Participate in an SAE.

Definition

Participation should include

- developing, completing, or continuing a plan to participate in an SAE as a work-based learning experience, based on personal and career goals
- documenting experience, connections, positions held, and competencies attained, using the *Virginia SAE Record Book*
- researching available awards and degrees, based on SAE participation.

Teacher resources:

- [FFA SAE](#)
- [The Agricultural Experience Tracker](#)

Process/Skill Questions

- What are the advantages of participating in work-based learning experiences and projects?
- How do SAEs help prepare students for the workforce?
- What are some examples of SAEs in AFNR?

Exploring Leadership Skills and FFA Membership

Task Number 41

Identify the benefits and responsibilities of FFA membership.

Definition

Identification should include

- benefits
 - listing opportunities to participate in community improvement projects and career development events (CDEs) and leadership development events (LDEs)
 - exploring leadership development opportunities
- responsibilities
 - researching the responsibilities of FFA officers, committees, and members
 - locating resources that guide participation in FFA activities
explaining the FFA Creed, Motto, Salute, and mission statement
explaining the meaning of the FFA emblem, colors, and symbols
explaining significant events and the history of the organization.

Process/Skill Questions

- How does one become an FFA member?
- What is the FFA’s mission and how does it accomplish its mission?
- What are the benefits and responsibilities of FFA membership?
- What five FFA activities are available through the local chapter?
- What are some significant events in FFA history? How have these events shaped membership over time?
- What is the FFA program of activities (POA), and how is it used?

Task Number 42

Describe leadership characteristics and opportunities as they relate to agriculture and FFA.

Definition

Description should include

- examples of successful leaders
- types of leadership
 - autocratic
 - participative
 - laissez-faire
 - servant
 - followership
- positive leadership qualities and traits of successful leaders
- opportunities for participating in leadership activities in FFA
- demonstrating methods for conducting an effective meeting.

Process/Skill Questions

- Who are some successful leaders in the agriculture industry?
- What qualities make a successful leader?
- What are leadership traits?
- What is the difference between positive and negative leadership?

Task Number 43

Apply for an FFA degree and/or an agricultural proficiency award.

Definition
Application should include

- identifying types of FFA degrees
 - Greenhand
 - Chapter
 - State
 - American
- identifying proficiency award areas
 - entrepreneurship
 - placement
 - combined
 - agriscience research
- exploring CDEs and LDEs related to this course
- identifying all SAE criteria to be eligible for the award
- identifying the type of award
- applying for an FFA award.

Teacher resource: FFA Agricultural Proficiency Awards

Process/Skill Questions

- Where are the awards and their application criteria located?
- What are the benefits of winning an FFA award?
- What are the benefits and requirements of an FFA degree?
- What FFA awards are available?
- How does the FFA degree program reward FFA members in all phases of leadership, skills, and occupational development?
- What is the highest degree that can be conferred upon an FFA member at the national level?
- What are the requirements for a Greenhand FFA degree?

Viewing the Forest as a Community (Ecology)

Task Number 44

Define forest ecology.

Definition

Definition should include

- an explanation that *ecology* is derived from the Greek word *eco*, meaning home
- the concept of the forest as a living community of plants and animals
- the role of ecology in forest management.
Process/Skill Questions

- Why is it important to understand the forest as a living community of plants and animals?
- How do various elements of the forest rely on other elements?

Task Number 45

Analyze forest ecosystems.

Definition

Analysis should include

- trees and other plant life
- wildlife and habitat
- soil (nutrients, erosion)
- air
- water
- anthropogenic activity
- succession.

Process/Skill Questions

- What are examples of ways biotic and abiotic elements influence each other in forest ecosystems?
- What are examples of nutrient inputs from biotic elements?
- How do soil attributes affect the food chain?

Task Number 46

Explain principles and processes of ecological succession.

Definition

Explanation should include

- types of ecological succession
 - primary
 - secondary
 - abandoned field
- definition of climax and climax vegetation
- forest stratification
 - forest layers
 - effects on forest resources
 - species diversity.

Process/Skill Questions
• How does ecological succession affect the landscape and forest ecosystem over time?
• Why is succession important to forest ecosystems?
• What effects does forest stratification play in species diversity?

Task Number 47

Analyze site factors that influence species diversity.

Definition

Analysis should include

- climate
 - temperature
 - moisture
 - wind
 - light
 - other weather conditions
- physiographic factors
 - topography
 - slope/aspect
 - soil factors
- biological factors
 - beneficial species and influences
 - adverse species and influences
- effects on site index.

Process/Skill Questions

- What controls the distribution and growth of trees and other forest plants?
- Why do plant and animal species in forests differ in various geographic regions?
- What influence does site index have on a forested region?

Task Number 48

Describe ecological concepts of shade tolerance and species competition.

Definition

Description should include

- factors influencing competition
 - growing space
 - soil moisture
 - soil nutrients
- effects of competition
• definition of a shade-tolerant tree
• tolerance classification for common Virginia tree species
• dominance classifications
 o dominant
 o co-dominant
 o intermediate
 o suppressed.

Process/Skill Questions

• How does competition and shade tolerance affect ecosystem diversity?
• What effect may competition have on native species and forest health?
• What are the effects of dominance on growth rates of trees?

Task Number 49

Identify forest soil characteristics.

Definition

Identification should include

• horizons of an undisturbed soil profile
• depth and texture of topsoil and subsoil
• water-retention capacity and moisture conditions of soil horizons
• nutrients (e.g., leaching, availability)
• soil acidity and alkalinity
• organisms in the soil.

Process/Skill Questions

• How do soil conditions affect species diversity and establishment within a forest?
• How do soils contribute to nutrient and biological cycles within a forest ecosystem?
• How do biological factors within the soil influence forest conditions and species diversity?

Task Number 50

Test soil samples.

Definition

Testing should include

• identifying physical and chemical properties of soil
• collecting soil samples representative of an area
• analyze soil survey data
• determining land classes based on soil classification standards
• determining appropriate conservation management practices based on soil properties and characteristics.

Process/Skill Questions

- What are the physical properties of soil?
- What are the chemical properties of soil?
- Why is the pH of soil important when making decisions regarding best management practices (BMP) and sustainability?

Task Number 51

Differentiate among the forest types of North America.

Definition

Differentiation should include

- forest types, such as
 - pine
 - pine hardwood
 - mixed hardwood
 - bottomland hardwood
 - cove hardwood
- influencing factors, such as
 - soil and moisture conditions
 - past treatment
 - clearing and later abandonment
 - wildlife influences
 - forest fire
 - insects and diseases
- effect of forest type on forest usage.

Process/Skill Questions

- How does forest type affect forest productivity and timber harvest?
- How do differences among forest types influence other ecosystem components?

Task Number 52

Describe the relationship between living organisms and the environment.

Definition

Description should include

- forest influences on ecosystem cycles
- water
- nutrients/soil
- beneficial and adverse biological influences on tree growth
 - commensalism
 - symbiosis
 - parasitism
- relationships between trees and living organisms
 - feeding relationships (food chains and webs)
 - energy transfer among organisms
 - habitat
 - recreational.

Process/Skill Questions

- What would be the effects of removing trees from ecosystems?
- Why are interactions among living organisms necessary to healthy environments?
- Why are trees essential to food and energy flow within forest communities?

Task Number 53

Describe the hydrological cycle and its effect on streams and watersheds.

Definition

Description should include

- major steps of the hydrologic cycle
- role of transpiration
- forest dependence on water
 - growth
 - reproduction
 - disease/pest cycles
- benefits of forest to water systems
 - water filtration
 - erosion control
 - riparian zones
 - water quality.

Process/Skill Questions

- How might our water resources be different without the benefits trees provide?
- What effects would diminished water resources have on forest ecosystems?
- What effect might the rate of transpiration have on other steps in the hydrologic cycle?

Task Number 54
Describe how land use and other human activities affect soil, water, and vegetative resources.

Definition

Description should include

- factors driving human use of forest ecosystems
 - economic
 - social/political
 - environmental
 - cultural
- negative human influences on forest resources
 - resource depletion/destruction
 - pollution
 - loss of biodiversity
 - reduction of productivity
 - changes in species composition
- conservation efforts
- laws and regulations influencing human activity.

Process/Skill Questions

- How have human influences and activities within forests changed over the years?
- How can humans exert a more positive effect on forest resources?
- What roles do laws and regulations play in influencing human use within forests?

Task Number 55

Identify the roles of government, industry, and private forestry agencies.

Definition

Identification should include

- governmental regulations for forest use
 - current laws and regulations
 - historical changes in laws and regulations
- basic processes for creating laws and regulations
 - local
 - state
 - federal
- social and economic pressures influencing forest ecosystem use
- benefits to forest preservation
- conservation influences on law and regulation formation.
Process/Skill Questions

- How can governmental and industrial influences ensure environmental sustainability of forest and forest resources?
- How have the environmental roles of government and industry agencies changed over time?
- How might forests be different without regulation?

Interpreting Maps, Aerial Photographs, and Satellite Imagery

Task Number 56

Interpret topographic maps, relief maps, aerial photography, and virtual soil maps.

Definition

Interpretation should include

- type of information illustrated by each map type
- symbols and other elements of each map type
- differences among the map types.

Process/Skill Questions

- What are the major differences between a topographic map and a relief map?
- How are virtual soil maps created?
- What recent developments have improved aerial photography?

Task Number 57

Locate landmarks on a topographic map, a relief map, and in an aerial photograph.

Definition

Locations should include

- major waterways (e.g., rivers, streams, lakes)
- landforms (e.g., saddles, ridges, peaks)
- fabricated structures (e.g., power lines, water tanks, buildings).
Teacher resource: Topographical Map Symbols, United States Geological Survey (USGS)

Process/Skill Questions

- How are peaks denoted on topographic maps?
- How is the direction of flowing water illustrated on a topographic map?
- How are contour lines valuable in identifying landmarks and other structures?
- Why are symbols used on topographic maps?
- Why is there a standard set of symbols?
- How are topographic map revisions shown?

Task Number 58

Determine slope and distance.

Definition

Determination should include the use of forestry tools and equipment, such as clinometers, GPS, transit levels, chains, and laser range finders.

Teacher resource: Virginia FFA Association

Process/Skill Questions

- What equipment are most accurate for determining slope?
- What equipment are most accurate for determining distance?
- What equipment would be practical for various forestry activities?

Task Number 59

Determine distance and slope with a topographic map.

Definition

Determination should include using map scale and ruler or planimeter and interpreting contour lines for slope.

Process/Skill Questions

- What are common scales used for topographic maps?
- How does map distance relate to ground distance?
- How can latitude and longitude be used to estimate distance?

Task Number 60
Perform map-reading operations.

Definition

Performance should include

- identifying map title
- identifying area delineated
- identifying area description
- identifying north arrow
- identifying map location key
- identifying map legend
- using linear measurements to calculate the area of a tract of land
- interpreting legal land descriptions
- locating a land area, using a legal land description
- reviewing and interpreting aerial maps and photos
- interpreting topographic maps
- interpreting terms, symbols, and scales used on soil and topographic maps.

Process/Skill Questions

- Why are the north arrow and the location key important?
- What types of projects would require a stand map?
- What information is included in the area description?

Task Number 61

Determine land use from aerial photography and satellite images.

Definition

Determination should include identifying land features (e.g., agricultural, forestry, industrial, residential, and other common land uses).

Process/Skill Questions

- What are the discernible features of each land use?
- How does land use affect the topography of an area?
- How does topography affect land use?

Task Number 62

Conduct a land navigation exercise.

Definition
Conducting should include using a map in concert with a compass and/or GPS.

Process/Skill Questions

- What are the differences between using a compass and GPS?
- What are possible advantages/disadvantages of using a compass and GPS?

Task Number 63

Research mapping programs and geographic information systems (GIS).

Definition

Research should include current mapping programs and software.

Teacher resource: InFOREST, Virginia Department of Forestry

Process/Skill Questions

- What is the accuracy, advantages, and disadvantages of each program or system?
- How do the monetary costs of each system compare?
- Which systems are best for forestry applications?

Task Number 64

Compare aerial photography, satellite data, and LiDAR in identifying forest groups.

Definition

Comparison should include

- aerial photography
 - can be viewed without electronics
 - can take measurements
 - must have sequenced photos
 - unmanned aerial vehicles (UAV)
- satellite data
 - no pilot needed
 - can be layered with other data on a computer
 - can take measurements
- LiDAR
 - can take measurements
 - digital elevation model
 - can collect tree canopy and sub-stratum data.
Process/Skill Questions

- What is the definition of photogrammetry?
- What weather factors can affect aerial photography? Satellite data?
- What instrument is used when looking at aerial photos?

Task Number 65

Create a map of a local forest area in Virginia.

Definition

Creation should include

- contour lines
- map symbols
- map colors.

Process/Skill Questions

- What is a legend on a map?
- What is the symbol for a depression?
- How can a GPS help map an area?

Managing the Forest (Silviculture)

Task Number 66

Explain silvicultural systems used in forest management.

Definition

Explanation should include

- describing a program of treatments integrating specific harvesting, regeneration, and stand-tending methods to achieve a predictable yield of benefits from the stand over time
- describing the principle methods of regeneration and desired age structure to maximize the production of timber crops
- describing non-timber objectives, such as watershed health, wildlife production, ecological considerations, and other resource objectives
• describing the production of planned harvests of forest products over the long term that accommodates biological, ecological, and economic concerns to ensure sustainability of resources; provides for regeneration and planned seral stage development; and effectively uses growing space and productivity to produce desired goods, services, and conditions.

Teacher resource: What is a Silvicultural System?, USDA

Process/Skill Questions

• Why is it important to consider specific harvesting, regeneration, and stand-tending methods to achieve a predictable yield of benefits?
• What non-timber objectives should one consider when managing a forest or timber stand?
• What ecological considerations should one examine when managing a forest or timber stand?

Task Number 67

Develop a plan for management of a forest.

Definition

Development should include a plan (e.g., recreational, wildlife, timber, revenue, aesthetic) based on considerations such as

• site evaluation
• composition of the stand
• forest types
• forest age
• age distribution of trees
• growth rate
• size
• types of trees
• quality of the site
• products available
• reproduction rate
• landowner objectives
• inventory
 o tree species
 o height
 o diameter
 o health
 o quality of timber
 o management recommendations for landowner
• cost and profit analysis.

Process/Skill Questions

• Who develops the forest management plan?
• What forestry tools are used for determining size in a stand analysis?
• How is growth rate determined?
• What are the dominant species in the area?
• What other species are available to meet plan objectives?
• What sizes of timber are present (e.g., sapling, pulpwood, sawtimber)?

Task Number 68

Explain nutrient requirements for growth of immature and mature forest systems.

Definition

Explanation should include

• site quality and growth requirements for immature and mature trees
• reproduction requirements for immature and mature trees.

Process/Skill Questions

• How does tree growth affect nutrient requirements?
• How do respiration and photosynthesis reactions change as the tree ages?
• How long does it take a white oak to reach sexual maturity?

Task Number 69

Develop a plan for a prescribed burn.

Definition

Development should include

• reason for burn (e.g., site preparation, pest control, regeneration of a specific species)
• authorizations
• maps
• description of desirable burning conditions
• precautions
• ignition methods
• weather analysis
• fire breaks
• fire tools (e.g., weather kit, Pulaski axe, drip torch)
• adherence to Virginia's Burn Law.

Process/Skill Questions

• What harvest cuttings use a controlled burn for reforestation?
• How does weather affect a prescribed burn?
How does a prescribed burn affect the forest?
What types of forests are dependent on fire?

Regenerating the Forest

Task Number 70

Plant forest seedlings.

Definition

Planting should include

- determining tree species to be planted
- preparing the site for tree reproduction
- following instructions for using tools (e.g., hand shovel, mattock, hoe, planting bar)
- inserting seedling
- firming soil around seedling.

Process/Skill Questions

- What are some local sources for obtaining seedlings?
- How should seedlings be transported prior to planting?

Task Number 71

Compare methods of forest regeneration.

Definition

Comparison should include methods of reproduction that are

- natural
- artificial.

Process/Skill Questions

- What three conditions must be achieved for successful natural reproduction?
- What are the advantages and disadvantages of natural methods of reproduction?
- What are the two activities required in any reproduction method?

Task Number 72
Develop a plan for artificial regeneration.

Definition

Plan should include

- site preparation
- selection of planting stock
- consideration of the planting season
- use of tools
- care of planting stock
- planting procedures
- use of tree shelters where needed
- spacing of trees
- consideration of survival rate.

Process/Skill Questions

- When is the best time to plant?
- Where should bundles be stored?
- How far should trees be spaced for planting?
- How many trees need to be left for reforestation in a seed tree cutting?

Measuring and Marketing Forest Products

Task Number 73

Identify forest products and their markets.

Definition

Identification should include

- sawtimber
- pulpwood
- crossties
- posts
- veneer
- piling
- cooperage
- biomass.

Process/Skill Questions
• What are some of the by-products left in the woods after a logging operation?
• What are some of the markets available locally?
• How is biomass marketed in Virginia?

Task Number 74

Examine the influence of global markets on the import and export of forest products.

Definition
Examination should focus on variation in demand for forest products and a decrease in the number of acres that are available to grow quality timber.

Process/Skill Questions
• How can management techniques grow more trees on less land?
• Which species of trees are more suited for quick rotations?
• Where are some of the world's largest timber-producing forests?

Task Number 75

Measure forest products

Definition
Measurement should include choosing the appropriate method for the given forest product (e.g., sawtimber, carbon, chip and saw, pulpwood).

Teacher Resource: Measuring Standing Trees and Logs, Virginia Tech

Process/Skill Questions
• What are the methods used for calculating timber value?
• What are the methods used for calculating board foot volume of standing trees?
• What are the methods used to calculate volume cubic feet of pulpwood in standing trees?

Task Number 76

Calculate the total volume and value of pulpwood in standing trees.

Definition
Calculation should include

- estimating the number of five-foot pulpwood bolts in a tree using a Biltmore stick from 66 feet away
- estimating the cubic feet/cords of pulpwood in a tree using a pulpwood scale.

Teacher Resource: Forestry Career Development Events, FFA

Process/Skill Questions

- What is the volume cubic feet of pulpwood in a tree with a diameter at breast height (DBH) of 10 and 3.5 pulpwood sticks?

Task Number 77

Calculate the volume board feet (VBF) and value of sawtimber/saw logs in standing trees.

Definition

Calculation should include determining volume board feet of lumber

- measuring the DBH of a tree using a Biltmore stick (DBH is defined as the diameter of the tree taken 4.5 feet up the trunk on the uphill side)
- estimating the number of 16-foot logs in a tree using a Biltmore stick (estimate tree height at the point where the trunk narrows to 8 inches or where the tree contains too many defects—large limbs, knots, hollow spots, etc.—to be commercially valuable from 66 feet away. Tree lengths are reported in 16-foot lengths, so a tree that is 32 feet tall would have two 16-foot sections or logs)
- estimating the board feet in a tree using an International, Doyle, or Scribner Log Rule to calculate the board footage contained in the standing timber. DBH numbers run down the left column while the number of 16-foot logs runs across the top
- investigating market price for the tree species.

Teacher Resource: Forestry Career Development Events, FFA

Process/Skill Questions

- Why is a knowledge of tree identification important to determining the value of standing timber?
- What is the acreage of a rectangular tract of land 900 yards in width and 8,000 feet in length?
- Why is it sometimes advantageous not to harvest?
- What is the VBF of lumber in a tree with a 16-inch DBH and 3.5 16-foot logs? What is the value of the tree if the market value for standing red oak is $850 dollars per thousand board feet?
Using Forestry Best Management Practices (BMP) to Harvest Timber Products

Task Number 78

Explain the effects of forestry best-management practices on watershed conditions.

Definition

Explanation should include

- erosion from clearing and roads
- protection of residual trees in streamside management zones (SMZs)
- preservation of riparian areas or SMZs.

Teacher resource: Virginia’s Forestry Best Management Practices for Water Quality, Virginia Department of Forestry

Process/Skill Questions

- What measures can be taken to limit erosion on roads and cleared areas?
- What is an SMZ, and why is it important?

Task Number 79

Explain the laws pertaining to forestry and water quality.

Definition

Explanation should include

- National Environmental Policy Act, 1969
- Clean Water Act, 1972
- Chesapeake Bay Preservation Act, 1988.

Process/Skill Questions

- How does the Clean Water Act affect planning a harvesting operation?
- Why are regulations important for environmental protection?
Task Number 80

Outline the essential steps of a harvest plan.

Definition

Outline should include

- landowner objectives
- harvest method to be used
- BMP
 - protecting the water and soil resources
 - closing out roads and restricting access
 - reseeding roads and logging decks
- environmental effects
- regeneration methods.

Process/Skill Questions

- Why are landowner objectives important to harvest planning?
- What are different harvesting methods?
- What are BMP, and why are they important?
- What can be done to limit erosion on areas with exposed soil?
- Why is regeneration important to pre-harvest planning?
- Whose job is it to manage harvesting operations?
- What percentage of Virginia's forestland is privately owned?
- What role does the Virginia Department of Forestry play in harvest operations?

Task Number 81

Describe the advantages and disadvantages of various forest harvesting methods.

Definition

Description should include advantages and disadvantages for methods including, but not limited to,

- clear-cut
- seed tree
- shelterwood
- selection
- sanitation
- salvage.

Process/Skill Questions

- How is lightning a problem with the seed-tree method of harvesting?
• When is clear-cutting the only practical method?
• Why must caution be used in selecting trees for single-tree selection?
• What is the Virginia Seed Tree Law for clear-cutting?

Task Number 82

Comply with federal, state, and local safety and legal requirements in the operation of all equipment and tools.

Definition

Compliance should include

• meeting OSHA requirements
• wearing personal protective equipment (PPE)
• using safety guards on equipment
• maintaining proper distance around equipment in operation.

Process/Skill Questions

• Where can OSHA requirements be found?
• What PPE is required when operating a chainsaw?
• What safety guards are on a chainsaw, and where are they located?

Task Number 83

Operate machinery and equipment.

Definition

Operating machinery and equipment should include

• following all safety procedures, guidelines, and manufacturer’s recommendations to include completing written safety tests, parts identification tests, and performance tests for all machinery and equipment
• identifying and eliminating hazards in the workplace
• observing color-coded warnings in work areas and on equipment and machinery
• identifying safe and effective fire-extinguishing techniques.

Teacher resources:

National Safe Tractor and Machinery Operation Program (NSTMOP), Penn State Extension

Laboratory Safety Resources, Virginia Tech

Process/Skill Questions
• Why is it important to follow all suggested safety guidelines and manufacturer’s recommendations when using machinery and equipment?
• Why is it important to have owner’s manuals readily available?
• What is NSTMOP?

Task Number 84

Maintain equipment and machinery according to manufacturer recommendations.

Definition

Maintenance should include

• determining and performing preventative maintenance measures
• maintaining and servicing small gasoline engines using the operator’s manual
• keeping records of equipment servicing
• adhering to required procedures for disposing of waste products
• adhering to required procedures for handling flammable and non-restricted chemicals
• storing equipment and machinery according to manufacturer recommendations
• performing minor welding repairs using arc welding and oxy-acetylene equipment.

Process/Skill Questions

• What methods are used to store gasoline?
• What are the required procedures for handling and storing flammable substances?
• Why should one use the operator’s manual to use troubleshooting methods for equipment and machinery repair?

Task Number 85

Identify the parts of a chain saw.

Definition

Identification should include

• bar
• chain
• chain brake
• throttle
• choke
• power switch
• starter
• safety features.

Process/Skill Questions
Task Number 86

Explain procedures for felling trees.

Definition

Explanation should include

- maintaining situational awareness
 - analyzing the felling job
 - checking the base of the tree
 - examining the surrounding terrain
 - examining the immediate work area
 - considering climber and ground crew safety precautions
- felling problem trees or snags first
- undercutting all trees exceeding five inches (127 mm) in DBH before making a backcut
- inspecting tree for a dead top, loose bark, limbs, and other debris leaning or hanging into it
- using a hatchet or axe, sounding completely around the trunk of any large trees to check for rot
- observing for other trees and tops that may fall in an undetermined direction when hit by a falling tree
- undercutting and back cutting all trees at a safe standing height
- never trusting holding wood in partly rotted trees
- never making any side cuts or corner cuts in hollow trees or trees with heart rot unless an adequate hinge can be maintained
- making the proper face/undercut with the opening large enough to control the tree nearly to the ground
- making the downhill or off cut first
- beginning the backcut by inserting wedges into the kerf as soon as practical
- continuing to cut until the desired amount of wood holds the tree
- ensuring that sloping/horizontal cuts do not cross one another
- never leaving a tree partially cut (i.e., always finishing the felling job before leaving with the exception that where hazards are unusually significant, leave trees standing, ribbon the area with hazard tape, or a suitable substitute, and notify the immediate supervisor)
- never climbing a lodged tree
- notifying nearby workers and the immediate supervisor of the hazard
- pulling the lodged tree down by tractor, winch, or other mechanical means whenever possible
- before returning to work on the felled tree, checking all snags and adjacent trees for broken limbs, log chunks, loose bark, and overhead hazards.

Teacher resource: Health and Safety Code Handbook, United States Department of Agriculture Forest Service

Process/Skill Questions

- Why should a hinge be used when felling a tree?
- What purpose does a wedge serve?
- What hazards can occur when felling a tree?
• Why should some trees be limbed or topped before they are felled?
• What safety hazards are faced when limbing and topping trees?
• What is the job of the ground crew when limbing and topping trees?

Task Number 87

Explain bucking and limbing techniques to ensure worker safety.

Definition

Explanation should include

• determining if spotters or observers are needed
• considering obscured vision factors
• considering weather factors
• planning escape routes
• considering roadways, trails, firelines, and overhead power lines
• considering nearby workers
• considering felling, bucking, and limbing hazards
 o considering overhead hazards
 o evaluating guide bar length
 o describing footing
 o describing felling, bucking, and limbing area and escape routes
 o anticipating tree, log, and limb behavior
• planning bucking cut considerations
 o slope
 o tension
 o compression
• locating areas of tension in the log
 o inspecting the log for all binds, pivot points and skids
 o using wedges when bucking
• preventing the chain from contacting the ground.

Process/Skill Questions

• How does a sawyer avoid pinching the bar?
• Why should the chain not meet the ground?

Task Number 88

Outline procedures for supervising the loading and unloading of logs.

Definition

Outline should include
Process/Skill Questions

- Why is hauling timber sometimes the most dangerous aspect of timber harvesting?
- What methods can be used for loading trucks?

Processing Timber Products and Grading Lumber

Task Number 89

Describe sawmill safety, equipment operation, and first-aid procedures.

Definition

Description should include

- safety glasses
- hearing protection
- steel-toe footwear
- debarker
- head rig
- edger
- trimmer.

Process/Skill Questions

- What types of injuries are common in a sawmill?
- What safety rules apply to workers? How do those rules differ for visitors?
- What training is needed to operate equipment?
- What type of first-aid training is needed?

Task Number 90

Describe general sawmill operation activities.

Definition

Description should include
• sawyer
• edger
• decker
• trimmer
• piler
• debarker.

Process/Skill Questions

• What steps turn a log into a board?
• What is the layout of a basic sawmill?
• What process does a log undergo outside the mill?

Task Number 91

Demonstrate the ability to operate processing equipment.

Definition

Demonstration should include using safety precautions when operating equipment such as

• head rig
• edger
• trimmer.

Process/Skill Questions

• What are the different types of head rigs?
• What safety equipment is needed when operating processing equipment?

Task Number 92

Demonstrate the ability to operate carriage.

Definition

Demonstration should include

• log-holding mechanism
• log-moving mechanism
• lateral indexing mechanism
• knees
• bolsters
• dogs.
Process/Skill Questions

- How do the knees, bolsters, and dogs operate?
- What does the carriage do?
- What piece of equipment is the carriage a part of?

Task Number 93

Define terms used in lumber grading.

Definition

Definitions may include

- check
- clear face
- knots
- scale stick
- shake
- split
- surface measure
- wane.

Process/Skill Questions

- Why is lumber grading important?
- What are the differences between hardwood grading and softwood grading?
- How much training is required before becoming a lumber grader?

Task Number 94

Identify boards as hardwood or softwood.

Definition

Identification should include the characteristics of hardwood and softwood and the species classified as such.

Process/Skill Questions

- For what uses is softwood best suited? Hardwood?
- How is sawmill equipment adjusted for processing softwood? Hardwood?

Task Number 95
List reasons for grading lumber.

Definition

List should include reasons such as

- yard lumber
- structural lumber
- factory/shop lumber.

Process/Skill Questions

- Why is softwood classified into three grades?
- Why does lumber have a grade?
- How do lumber grades affect the buyer, producer, and middle vendor?

Task Number 96

Identify grades used for hardwood and softwood lumber.

Definition

Identification should include

- standard grades
- grade combinations
- select grades
- common grades
- firsts
- seconds
- select
- No. 1 common
- No. 2 common, sound, wormy
- No. 3A
- No. 3B.

Process/Skill Questions

- What are the standard hardwood grades?
- How is hardwood graded?
- What is the basis for pine grades?

Task Number 97

List steps to follow when evaluating lumber.
Definition

List should include the steps for examining the sample for its characteristics and assigning a grade to the lumber.

Process/Skill Questions

- Whose job is it to evaluate lumber?
- How can lumber be evaluated before it is harvested?
- What does lumber's grade mean to the consumer?

Protecting the Forest

Task Number 98

Identify insects, diseases, and animal pests common to area forests.

Definition

Identification should include, but is not limited to,

- Asian long-horned beetle
- chestnut blight
- Dutch elm disease
- emerald ash borer
- gypsy moth
- hemlock woolly adelgid
- southern pine beetle
- white pine blister rust
- white pine weevil.

Process/Skill Questions

- How do insects, diseases, and pests affect the quality of timber?
- How will the emerald ash borer play a role in the changing of forests?
- How will the presence of the hemlock woolly adelgid affect the ecosystem?
- How has chestnut blight changed the Virginia forest?

Task Number 99

Identify tree diseases caused by organic pathogens, environmental conditions, and insects.
Definition

Identification should include diseases brought about by

- acid precipitation
- air pollution
- drought
- livestock
- nutrient deficiencies
- rodents
- whitetail deer.

Notable diseases include Dutch elm disease and beech bark disease.

Process/Skill Questions

- How can livestock damage the forest?
- What can be done to prevent livestock damage?
- What are the economic effects of insects, diseases, and animal pests?
- How can deer overpopulation affect the forest?

Task Number 100

Identify disease and pest cycles in tree species.

Definition

Identification should include

- effects of various diseases and pests on different species of trees
- specific stage at which forests should be treated for disease and pest factors that define a specific infestation.

Process/Skill Questions

- When should a forest be sprayed for the gypsy moth?
- What role do pheromones play in treatment?
- What influences disease resistance in tree species?

Task Number 101

Define invasive species.

Definition
Definition should include the concept that an invasive species is one that is introduced to an area where it has no natural predator and threatens local wildlife. Invasive species are usually non-native, but some native organisms that overpopulate can be considered invasive. Examples may include

- emerald ash borer
- gypsy moth
- kudzu
- multiflora rose
- thousand cankers disease
- tree-of-heaven.

Process/Skill Questions

- How can invasive species be controlled?
- How are invasive species introduced?
- How do invasive species affect the ecosystem?

Task Number 102

Explain climate effects that produce fires.

Definition

Explanation should include

- humidity
- drought
- lightning
- precipitation
- wind.

Process/Skill Questions

- How do time of day and humidity contribute to fires?
- Where in the United States are winds of great concern?

Task Number 103

Explain the development of a forest wildfire.

Definition

Explanation should include

- fire triangle
- ground fire
- crown fire
• surface fire
• duration
• intensity
• rate of spread
• spotting
• topography
• firebreaks.

Process/Skill Questions

• What type of fire is most destructive in a Virginia forest? How does this differ in the western United States?
• What is the primary cause of wildfires in Virginia?
• How does topography play a role in the development of forest fires?
• How does the time of year affect the forest's ability to regenerate?
• How does a fire affect water quality?

Task Number 104

Describe forest wildfire-fighting techniques and fire-control measures.

Definition

Description should include

• indirect attack
• direct attack
• equipment used
 o Pulaski axe
 o drip torch
 o fire rake
• backfire
• fireline
• mopping up
• suppression
• prescribed burning
• National Interagency Fire Center
• local fire departments
• cost analysis
• public safety.

Process/Skill Questions

• What is the last equipment generally used on a fire?
• How is the rate of spread calculated?
• How are decisions made to fight a fire or let the fire burn?

Task Number 105
Describe the location of a forest fire.

Definition

Description should include the use of U.S. Forest Service terminology and

- latitude
- longitude
- duration
- intensity
- rate of spread
- fire breaks.

Process/Skill Questions

- Why are latitude and longitude used to locate a fire?
- How has GPS increased the accuracy of locating a fire compared to the old method of triangulation?

Task Number 106

Explain a fire safety program.

Definition

Explanation should include measures taken to prevent fires, such as

- identification of target audience
- understanding of issue to be addressed (kids playing with matches, leaves in gutters)
- knowledge of fire triangle and fire causes
- practical uses of fire as a tool
- emergency service responses to fires and firefighting strategies.

Process/Skill Questions

- What are reasons for fire starts in Virginia?
- How have programs like Smokey the Bear influenced society’s attitude toward fire, specifically in contrast to fire uses 100 years ago?
- How is fire response handled in your community?

Task Number 107

Prepare publicity for preventing forest fires.

Definition

Preparation should include
• marketing techniques (e.g., media, brochures)
• programs, such as Keep America Green and Smokey the Bear.

Process/Skill Questions

• How does the audience's age influence the publicity?

Task Number 108

Develop a forest-fire prevention plan.

Definition

Development should include

• assessment of factors that influence fire behavior (e.g., fuel, weather, topography)
• vegetation (fuel) management strategies
• assessment of emergency response and support
• local laws and agencies.

Process/Skill Questions

• What are steps that an individual homeowner can take to prepare for a wildfire?
• What are some local laws that are used to prevent fires?
• How can landscaping influence fire behavior?

Task Number 109

Discuss economic principles in forestry management.

Definition

Discussion should include

• using a model forest operation with possible calculation of profit/loss, cost of operation, taxes, depreciation, marketing product, and stumpage cost
• keeping records
• completing basic financial documents
• explaining the use of banking procedures.

Teacher resource: National FFA Forestry Handbook

Process/Skill Questions

• What practices or processes have affected timber sales and or markets in your region?
• What are some important forest pests? Why is it important to control them?
• What are the positive and negative aspects of genetically modified trees?
- What are some issues that urban foresters face?
- What forestry BMP are used in your state, and why?
- How does watershed restoration affect communities? What role can forest management play in watershed restoration?
- What is *forest fragmentation*, and what are the strategies used to prevent it?
- What is the Sustainable Forestry Initiative (SFI) and Forest Stewardship Council (FSC), and what do they have in common?
- How do laws protect endangered species? Why should we be concerned about saving them?
- What is *woody biomass*? What are the positives and negatives of producing woody biomass?

SOL Correlation by Task

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>English:</th>
<th>History and Social Science:</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Identify the role of supervised agricultural experiences (SAEs) in agricultural education.</td>
<td>12.3, 12.5</td>
<td>VUS.8, VUS.9, VUS.10, VUS.11, WHII.8, WHII.10, WHII.11</td>
</tr>
<tr>
<td>40</td>
<td>Participate in an SAE.</td>
<td>12.5, 12.8</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Identify the benefits and responsibilities of FFA membership.</td>
<td>12.5, 12.6, 12.7, 12.8</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Describe leadership characteristics and opportunities as they relate to agriculture and FFA.</td>
<td>12.5</td>
<td>VUS.8, VUS.9, VUS.10, VUS.11, WHII.8, WHII.10, WHII.11</td>
</tr>
<tr>
<td>43</td>
<td>Apply for an FFA degree and/or an agricultural proficiency award.</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Define forest ecology.</td>
<td>12.3</td>
<td>BIO.8</td>
</tr>
<tr>
<td>45</td>
<td>Analyze forest ecosystems.</td>
<td>12.5</td>
<td>BIO.8</td>
</tr>
<tr>
<td>46</td>
<td>Explain principles and processes of ecological succession.</td>
<td>12.5</td>
<td>BIO.8</td>
</tr>
<tr>
<td>47</td>
<td>Analyze site factors that influence species diversity.</td>
<td>12.5</td>
<td>BIO.8, ES.2, ES.8, ES.11</td>
</tr>
<tr>
<td>48</td>
<td>Describe ecological concepts of shade tolerance and species competition.</td>
<td>12.5</td>
<td>BIO.8</td>
</tr>
<tr>
<td>49</td>
<td>Identify forest soil characteristics.</td>
<td>12.5</td>
<td>ES.8</td>
</tr>
<tr>
<td>50</td>
<td>Test soil samples.</td>
<td>12.5</td>
<td>PS.1*, PS.2*, PS.3*, PS.4*, PS.7*, PS.8*, PS.10*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ES.8</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Differentiate among the forest types of North America.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Describe the relationship between living organisms and the environment.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Describe the hydrological cycle and its effect on streams and watersheds.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Describe how land use and other human activities affect soil, water, and vegetative resources.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Identify the roles of government, industry, and private forestry agencies.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Interpret topographic maps, relief maps, aerial photography, and virtual soil maps.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Locate landmarks on a topographic map, a relief map, and in an aerial photograph.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Determine slope and distance.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Determine distance and slope with a topographic map.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Perform map-reading operations.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Determine land use from aerial photography and satellite images.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Conduct a land navigation exercise.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Research mapping programs and geographic information systems (GIS).</td>
<td>English: 12.5, 12.8</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Compare aerial photography, satellite data, and LiDAR in identifying forest groups.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Create a map of a local forest area in Virginia.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Explain silvicultural systems used in forest management.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Task Description</td>
<td>English:</td>
<td>History and Social Science:</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>67</td>
<td>Develop a plan for management of a forest.</td>
<td>12.1, 12.6</td>
<td>GOVT.7, GOVT.8, GOVT.9, GOVT.12</td>
</tr>
<tr>
<td>68</td>
<td>Explain nutrient requirements for growth of immature and mature forest systems.</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Develop a plan for a prescribed burn.</td>
<td>12.1, 12.5</td>
<td>GOVT.7, GOVT.8, GOVT.9, GOVT.12</td>
</tr>
<tr>
<td>70</td>
<td>Plant forest seedlings.</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Compare methods of forest regeneration.</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Develop a plan for artificial regeneration.</td>
<td>12.1</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Identify forest products and their markets.</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Examine the influence of global markets on the import and export of forest products.</td>
<td>12.5</td>
<td>GOVT.9, GOVT.12, VUS.14, WG.17, WHII.14</td>
</tr>
<tr>
<td>75</td>
<td>Measure forest products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Calculate the total volume and value of pulpwood in standing trees.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Calculate the volume board feet (VBF) and value of sawtimber/saw logs in standing trees.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Explain the effects of forestry best-management practices on watershed conditions.</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Explain the laws pertaining to forestry and water quality.</td>
<td>12.5, 12.8</td>
<td>GOVT.7, GOVT.8, GOVT.9</td>
</tr>
<tr>
<td>80</td>
<td>Outline the essential steps of a harvest plan.</td>
<td>12.6, 12.7</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Describe the advantages and disadvantages of various forest harvesting methods.</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Comply with federal, state, and local safety and legal requirements in the operation of all equipment and tools.</td>
<td>12.5</td>
<td>GOVT.7, GOVT.8, GOVT.9, GOVT.12</td>
</tr>
<tr>
<td>83</td>
<td>Operate machinery and equipment.</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Maintain equipment and machinery according to manufacturer recommendations.</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Identify the parts of a chain saw.</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Explain procedures for felling trees.</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Explain bucking and limbing techniques to ensure worker safety.</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Outline procedures for supervising the loading and unloading of logs.</td>
<td>12.6, 12.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Task</td>
<td>Language:</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Describe sawmill safety, equipment operation, and first-aid procedures.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Describe general sawmill operation activities.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Demonstrate the ability to operate processing equipment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Demonstrate the ability to operate carriage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Define terms used in lumber grading.</td>
<td>English: 12.3, 12.5</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Identify boards as hardwood or softwood.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>List reasons for grading lumber.</td>
<td>English: 12.6</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Identify grades used for hardwood and softwood lumber.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>List steps to follow when evaluating lumber.</td>
<td>English: 12.6</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Identify insects, diseases, and animal pests common to area forests.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Identify tree diseases caused by organic pathogens, environmental conditions, and insects.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Identify disease and pest cycles in tree species.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Define invasive species.</td>
<td>English: 12.3, 12.5</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Explain climate effects that produce fires.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Explain the development of a forest wildfire.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Describe forest wildfire-fighting techniques and fire-control measures.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>History and Social Science: GOVT.7, GOVT.8, GOVT.9, GOVT.12</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Describe the location of a forest fire.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Explain a fire safety program.</td>
<td>English: 12.5</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Prepare publicity for preventing forest fires.</td>
<td>English: 12.1, 12.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>History and Social Science: GOVT.7, GOVT.8, GOVT.9, GOVT.12</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Develop a forest-fire prevention plan.</td>
<td>English: 12.1</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Discuss economic principles in forestry management.</td>
<td>English: 12.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>History and Social Science: GOVT.7, GOVT.8, GOVT.9, GOVT.12, GOVT.14</td>
<td></td>
</tr>
</tbody>
</table>

FFA Information

The National FFA is an organization dedicated to preparing members for leadership and careers in the science, business, and technology of agriculture. Local, state, and national activities and award programs provide opportunities to apply knowledge and skills acquired through agriculture education.

For additional information about the student organization, see the [National FFA website](#) and the [Virginia FFA Association website](#).

Entrepreneurship Infusion Units
Entrepreneurship Infusion Units may be used to help students achieve additional, focused competencies and enhance the validated tasks/competencies related to identifying and starting a new business venture. Because the unit is a complement to certain designated courses and is not mandatory, all tasks/competencies are marked “optional.”

Laboratory Safety Resources

Laboratory Safety Resources
Appendix: Credentials, Course Sequences, and Career Cluster Information

Industry Credentials: Only apply to 36-week courses

- College and Work Readiness Assessment (CWRA+)
- Customer Service Specialist (CSS) Examination
- Forest Products and Processing Assessment
- National Career Readiness Certificate Assessment
- Natural Resources Systems Assessment
- Workplace Readiness Skills for the Commonwealth Examination

Concentration sequences: A combination of this course and those below, equivalent to two 36-week courses, is a concentration sequence. Students wishing to complete a specialization may take additional courses based on their career pathways. A program completer is a student who has met the requirements for a CTE concentration sequence and all other requirements for high school graduation or an approved alternative education program.

- Agricultural Business Fundamentals I (8022/36 weeks)
- Agricultural Business Management III (8026/36 weeks)
- Agricultural Business Operations II (8024/36 weeks)
- Applied Agricultural Concepts (8072/18 weeks)
- Applied Agricultural Concepts (8073/36 weeks)
- Biological Applications in Agriculture (8086/36 weeks)
- Biotechnology Applications in Agriculture (8087/36 weeks)
- Biotechnology Foundations in Agricultural and Environmental Science (8085/36 weeks)
- Community Forestry and Tree Management (8048/36 weeks)
- Ecology and Environmental Management (8045/18 weeks)
- Ecology and Environmental Management (8046/36 weeks)
- Fisheries and Wildlife Management (8041/36 weeks)
- Forestry Management (8042/36 weeks)
- Introduction to Natural Resources and Ecology Systems (8040/36 weeks)
- Operating the Farm Business (8014/36 weeks)
- Outdoor Recreation, Parks, and Tourism Systems Management (8043/36 weeks)

Career Cluster: Agriculture, Food and Natural Resources

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Occupations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agribusiness Systems</td>
<td>Agricultural Products Sales Representative</td>
</tr>
<tr>
<td>Environmental Service Systems</td>
<td>Environmental Compliance Inspector</td>
</tr>
<tr>
<td></td>
<td>Environmental Sampling and Analysis Technician</td>
</tr>
<tr>
<td></td>
<td>Secondary School Teacher</td>
</tr>
<tr>
<td></td>
<td>Toxicologist</td>
</tr>
<tr>
<td></td>
<td>Water Conservationist</td>
</tr>
<tr>
<td>Food Products and Processing Systems</td>
<td>Biochemist</td>
</tr>
<tr>
<td></td>
<td>Food Scientist</td>
</tr>
<tr>
<td>Natural Resources Systems</td>
<td>Ecologist</td>
</tr>
<tr>
<td></td>
<td>Fish and Game Officer</td>
</tr>
<tr>
<td></td>
<td>Forest Manager, Forester</td>
</tr>
<tr>
<td></td>
<td>Forest Technician</td>
</tr>
</tbody>
</table>
Career Cluster: Agriculture, Food and Natural Resources

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Occupations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Logging Equipment Operator</td>
</tr>
<tr>
<td></td>
<td>Microbiologist</td>
</tr>
<tr>
<td></td>
<td>Outdoor Recreation Guide</td>
</tr>
<tr>
<td></td>
<td>Park Manager</td>
</tr>
<tr>
<td></td>
<td>Park Technician</td>
</tr>
<tr>
<td></td>
<td>Range Technician</td>
</tr>
<tr>
<td></td>
<td>Wildlife Manager</td>
</tr>
<tr>
<td>Plant Systems</td>
<td>Botanist</td>
</tr>
<tr>
<td></td>
<td>Custom Harvester</td>
</tr>
<tr>
<td></td>
<td>Forest Geneticist</td>
</tr>
<tr>
<td></td>
<td>Plant Breeder/ Geneticist</td>
</tr>
<tr>
<td></td>
<td>Secondary School Teacher</td>
</tr>
<tr>
<td></td>
<td>Soil and Plant Scientist</td>
</tr>
<tr>
<td></td>
<td>Tree Surgeon</td>
</tr>
<tr>
<td>Power, Structural, and Technical Systems</td>
<td>Agricultural Engineer</td>
</tr>
<tr>
<td></td>
<td>Agricultural Equipment Operator</td>
</tr>
</tbody>
</table>

Career Cluster: Science, Technology, Engineering and Mathematics

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Occupations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering and Technology</td>
<td>Agricultural Engineer</td>
</tr>
<tr>
<td></td>
<td>Environmental Engineer</td>
</tr>
<tr>
<td>Science and Mathematics</td>
<td>Biologist</td>
</tr>
<tr>
<td></td>
<td>Botanist</td>
</tr>
<tr>
<td></td>
<td>Ecologist</td>
</tr>
<tr>
<td></td>
<td>Environmental Scientist</td>
</tr>
<tr>
<td></td>
<td>Hydrologist</td>
</tr>
<tr>
<td></td>
<td>Microbiologists</td>
</tr>
<tr>
<td></td>
<td>Plant Biologist</td>
</tr>
<tr>
<td></td>
<td>Plant Breeder and Geneticist</td>
</tr>
<tr>
<td></td>
<td>Plant Pathologist</td>
</tr>
<tr>
<td></td>
<td>Toxicologist</td>
</tr>
</tbody>
</table>